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Abstract

This article describes a new multivariate measure of overall gait pathology called the Gait Deviation Index (GDI). The first step in

developing the GDI was to use kinematic data from a large number of walking strides to derive a set of mutually independent joint rotation

patterns that efficiently describe gait. These patterns are called gait features. Linear combinations of the first 15 gait features produced a 98%

faithful reconstruction of both the data from which they were derived and 1000 validation strides not used in the derivation. The GDI was then

defined as a scaled distance between the 15 gait feature scores for a subject and the average of the same 15 gait feature scores for a control

group of typically developing (TD) children. Concurrent and face validity data for the GDI are presented through comparisons with the

Gillette Gait Index (GGI), Gillette Functional Assessment Questionnaire Walking Scale (FAQ), and topographic classifications within the

diagnosis of Cerebral Palsy (CP). The GDI and GGI are strongly correlated (r2 = 0.56). The GDI scales with FAQ level, distinguishes levels

from one another, and is normally distributed across FAQ levels six to ten and among TD children. The GDI also scales with respect to clinical

involvement based on topographic CP classification in Hemiplegia Types I–IV, Diplegia, Triplegia and Quadriplegia. The GDI offers an

alternative to the GGI as a comprehensive quantitative gait pathology index, and can be readily computed using the electronic addendum

provided with this article.
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1. Introduction

Comprehensive measures of gait pathology are useful in

clinical practice. They allow stratification of severity, give

an overall impression of gait quality, and aid in objective

evaluation of treatment outcome. There are many ways to

gauge overall gait pathology. Parent report questionnaires

such as the Gillette Functional Assessment Walking Scale

(FAQ), observational video analysis schemes like the

Edinburgh Gait Score, or rating systems such as the

Functional Mobility Scale (FMS), can provide a general

picture of gait impairment [1–3]. While parent and caregiver

assessments are useful and practical, they lack the precision

and objectivity provided by three-dimensional quantitative

gait data.

Gait data can be used to assess pathology in a variety of

ways. For example, stride parameters such as walking speed,

step length, and cadence provide an overall picture of gait

quality. These parameters are especially useful when non-

dimensionalized to account for differences in stature [4]. It is

possible, however, to walk with adequate stride parameters

and still have significantly atypical joint motions and

orientations. This suggests a need for three-dimensional gait

data in assessing overall gait pathology. Interpreting three-

dimensional gait data in a global sense is not a simple task.

www.elsevier.com/locate/gaitpost

Available online at www.sciencedirect.com

Gait & Posture 28 (2008) 351–357

* Corresponding author at: Bioengineering Research, Gillette Children’s

Specialty Healthcare, 200 East University Avenue, St. Paul, MN 55101,

United States. Tel.: +1 651 229 3929; fax: +1 651 229 3867.

E-mail address: schwa021@umn.edu (M.H. Schwartz).

0966-6362/$ – see front matter # 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.gaitpost.2008.05.001



Author's personal copy

Difficulties arise from the complexity of gait, and from the

interdependent nature of gait data. For example, to assess the

motions of the lower extremities during a single stride

requires the analysis of multiple joints and body segments in

multiple planes at multiple instants of time. Furthermore,

these motions are coupled across joints, planes, and time.

Motions of one joint affect the motions of adjacent or remote

joints. Motions of a joint in one plane are coupled to motions

in other planes. Finally, positions of a joint at one time affect

positions at a later instant. Combining these effects, it can be

surmised that the motion of a joint in a given plane at one

instant can affect the position of a different joint, in a

different plane, at a different instant. It is clear, therefore,

that some method for dealing with this complexity and

interdependence is necessary to gain an overall sense of gait

pathology.

A number of multivariate statistical methods have been

developed for dealing with the complexity and interdepen-

dence of gait data [5–20]. While some of these methods

focus primarily on identifying gait patterns and relationships

among variables, several aim to develop either joint-specific

or overall indexes of gait pathology [7,8,10,12–14,19].

Among these, the Gillette Gait Index (GGI) appears to be the

most extensively validated, commonly cited (based on a
TM citation search), and is widely used in

clinical gait research and practice [3,12,13,21–25]. While

the GGI has been shown to be useful, a number of limitations

have also been noted [26,27]. These include the arbitrary,

unbalanced, and incomplete nature of the 16 univariate

parameters that comprise the index, uncertainty surrounding

principal component scaling, non-normality of the index,

lack of physical meaning for the multivariate components,

and difficulties in implementation—including excessive

sensitivity to lab-specific control data.

This article describes a new measure of overall gait

pathology—the Gait Deviation Index (GDI). Face and

concurrent validity data for the GDI are presented through

comparisons with the GGI, FAQ, and topographic classifica-

tions within the diagnosis of Cerebral Palsy (CP).

2. Methods

2.1. Motivation

The method used in constructing the GDI was motivated by a

biometric method used for face identification—the so-called

‘‘eigenface’’ method [28]. In the eigenface method, a large collec-

tion of faces is digitized and the resulting arrays of grayscale values

are converted to vectors. This collection of vectors is then subjected

to principal component analysis. A small number of the extracted

eigenvectors (called eigenfaces) that account for a large percentage

of the information in the original collection of faces are preserved.

These are then combined in a linear manner to create a reduced

order approximation of any given face. A distance metric is defined

to measure the similarity (proximity) of one face to another.

Translating this procedure to gait analysis, the digitized face is

replaced by a set of kinematic plots (digitized gait) and the

grayscale levels are replaced by joint angles. Given these substitu-

tions, the principles, methods, and proximity measure follow

directly.

2.2. Reduced order approximation of gait data

One barefoot stride was selected from each side of subjects seen

in the Gillette Children’s Specialty Healthcare Center for Gait and

Motion Analysis between Feb-1994 and Apr-2007 (Nsides = 6702).

All data had been processed using either the Vicon Clinical

Manager or Vicon Plug-in-gait model. Pelvic and Hip angles in

all three planes, Knee Flex/Extension, Ankle Dorsi/Plantarflexion,

and Foot Progression were extracted at 2% increments throughout

the entire gait cycle (9 angles � 51 points = 459 datum). The data

were then arranged in 459 � 1 gait vectors (g).

g ¼ ½fpel tiltg; fpel obliqg; . . . ; ffoot progg�T
¼ ½fg1�51g; fg52�102g; . . . fg358�408g; fg409�459g�T

(1)

The vectors from every subject side were concatenated to form a

459 � 6702 gait matrix G

G ¼

g1
1
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.
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1

g6702
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..

.

g6702
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0
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2
6664

3
7775: (2)

The singular value decomposition (SVD) of G was computed,

and the unit length singular vectors ff̂1; f̂2; f̂3; . . . ; f̂459g and sin-

gular values fl1; l2; l3; . . . ; l459g were preserved. These singular

vectors, referred to henceforth as gait features, form an optimal

orthonormal basis ( f-basis) for reconstructing the gait data. The f-

basis is optimal in that it maximizes variance accounted for (VAF)

using the minimum number of features.

Given the f-basis, an mth order approximation of any gait vector

can be computed as

g̃m ¼
Xm

k¼1

ck f̂k; (3)

where the feature components ck are

ck ¼ g � f̂k: (4)

The feature components can be arranged as a vector c = (c1, c2, . . .,
cm), and thought of as the gait vector projected onto the kth feature

directions.

In order to choose an appropriate order of reconstruction – that

is to choose m = mcrit from Eq. (3) that yields g̃m ‘‘sufficiently’’

close to g – two different criteria were examined. The first of these

was an evaluation of the portion of overall variation accounted for

by the first m features (VAFm). It is straightforward to show that this

can be computed as

VAFm ¼
Pm

i¼1 l2
iP459

j¼1 l2
j

: (5)

The second criterion was to measure the fidelity of the recon-

structed gait vector ðg̃mÞ to the original gait vector (g). This can be

expressed by (among other options) the projection of the recon-
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structed gait vector onto the original gait vector, normalized by the

original gait vector,

F ¼ g � g̃m

jjgjj2
: (6)

The value of F is 1.0 when g̃m ¼ g, and decreases to a minimum of

0.0 as g̃m deviates from g. Note that jjg̃mjj � jjgjj)F � 1:0.

Finally, to test whether the reconstruction was efficient on non-

native data, 1000 strides not among the original 6702 (non-native)

were reconstructed to various orders m = {1–459}. The quality of

these reconstructions, as measured by VAF and F, was compared to

that of the native data at the same order of reconstruction.

2.3. Proximity of gait data

Given any two subjects a and b, the Euclidean distance (dab)

between the gait vectors of the subjects (g̃a and g̃b)1 can be defined

as

da;b ¼ jjca � cbjj: (7)

The distance metric applies to any pair of gait vectors. With this

in mind, consider a control group (e.g. typically developing – or TD

– children). Let c̄TD be the average of the feature components over

the TD control group. The feature components c̄TD thus describe

the average TD gait. The distance of a subject a from the average

TD gait is

da;TD ¼ jjca � c̄TDjj: (8)

2.4. The Gait Deviation Index

Given the distance between subject a and the average control,

the raw GDI for subject a is defined as

GDIaraw ¼ lnðda;TDÞ: (9)

This measure can be used in its raw format as a measure of

pathology. To improve interpretability the GDI can be scaled as

follows [27]. First compute GDIk
raw for each subject in the control

group (k = 1, Ncontrol)

GDIk
raw ¼ lnðdk;TDÞ

¼ lnðjjck � c̄TDjjÞ (10)

Next, compute the sample mean and standard deviation of

GDIk
raw ðMeanðGDITD

rawÞ; S:D:ðGDITD
rawÞÞ. Then compute the z-score

with respect to the TD control for subject a,

zGDIaraw ¼
GDIaraw �MeanðGDITD

rawÞ
S:D:ðGDITD

rawÞ
: (11)

Finally, multiply these z-scores by 10 and subtract them from 100 to

give the GDI for subject a,

GDIa ¼ 100� 10� zGDIaraw (12)

Keeping in mind that the GDI measures a (scaled) distance away

from the average TD gait, the resulting GDI can be interpreted as

follows:

� GDI � 100 indicates a subject whose gait is at least as close to

the TD average as that of a randomly selected TD individual. In

other words, a GDI of 100 or higher indicates the absence of gait

pathology.
� Every 10 points that the GDI falls below 100 corresponds one

standard deviation away from the TD mean. So, for example,

GDIa = 75 means that the gait of subject a is 2:5� S:D:ðGDITD
rawÞ

away from the TD mean.

2.5. Concurrent and face validity

The concurrent and face validity of the GDI was evaluated by

examining its behavior with respect to several established overall

pathology measures: The GGI, FAQ, and topographic classification

for the sub-set of subjects with a diagnosis of Cerebral Palsy (CP).

3. Results

3.1. Order of reconstruction

Examination of VAF and F showed that 15 features

accounted for 98% of the total variation and produced a 98%

faithful gait vector as measured by the mean F (Fig. 1).

Further examination showed that 99% of all subjects

exhibited a F > 95%. The difference in reconstruction

efficiency between native and non-native data was trivial

(<0.1%) at m = 15. Based on these results, 15 features

(mcrit = 15) was deemed to provide a ‘‘sufficiently’’ faithful

reconstruction of the native and non-native data.

A typical example of a 95% faithful (F = 0.95) 15 feature

reconstruction is provided for a subject with GDI = 70,

which is three standard deviations away from TD (Fig. 2). It

was noteworthy that significant timing differences were

captured by the reconstructed data (e.g. peak swing phase

knee flexion, dorsi/plantarflexion), as were large shifts in

level (e.g. pelvic rotation and tilt, dorsi/plantarflexion, foot

progression), along with radical alterations in pattern (e.g.
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Fig. 1. A 98% complete reconstruction is attained with 15 features, as

measured by both variance accounted for (VAF) and reconstruction fidelity

(F). Note that F for the 6702 native strides (used to generate the gait

features) and 1000 non-native strides are essentially identical.

1 The Greek superscript now refers to the subject, not the level of

reconstruction as was the case in Eq. (3). This convention will hold for

the remainder of the text, unless otherwise noted.
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hip rotation, hip adduction). Most of the reconstruction

errors were on the order of 18, and the shapes of the

kinematics were largely preserved. It should be noted that

the size and location of reconstruction errors will vary from

subject-to-subject.

3.2. Comparison to the GGI

Both the GDI and the GGI compare a subject’s gait to the

mean gait pattern of a control group (TD subjects, in this

study). Because the GGI reflects a distance squared, it was

necessary to perform a transformation in order to compare it

to the GDI,

GGI	 ¼ lnð
ffiffiffiffiffiffiffiffiffi
GGI
p

Þ (13)

The GDI was compared to the GGI* (Fig. 3). There was a

moderately strong linear relationship (r2 = 0.56) between

the two measures, suggesting that both measures are

associated with the same basic underlying content (gait

pathology). However, there was also a relatively large spread

in the data, indicating that the two measures reflect different

aspects of gait pathology.

3.3. Comparison to the FAQ

The GDI was stratified by FAQ walking level, from six

(limit of community ambulation) to ten (keeps up with
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Fig. 2. An example of a 15 feature reconstruction (F = 0.95) shows the ability to model complex gait deviations with a significantly reduced order

approximation. The solid line is the original data for the subject, the dotted line is the subject’s 15 feature reconstructed data, and the heavy grey line is the

typically developing control data mean. The example is representative of the overall performance, and shows data for a subject with a GDI = 70 (three standard

deviations from the control group). Deviations in timing, level, and pattern are all captured.

Fig. 3. A scatter plot of the GDI versus lnð
ffiffiffiffiffiffiffiffiffi
GGI
p

Þ shows a strong relation-

ship between the two measures (r2 = 0.56). There is, however, a significant

spread, suggesting that the GDI and GGI measure different aspects of gait

pathology. The dashed lines indicate the average level for typically devel-

oping (TD) subjects.
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peers). There were 3922 such subject-strides out of the

original 6702 within this FAQ range. The GDI distribution

with respect to FAQ was examined to evaluate the effect of

function on the pathology measures (Fig. 4, Table 1). Two

things were noteworthy about these results. First, Kolomo-

gorov–Smirnov tests found that the GDI was normally

distributed at each FAQ level and for the TD control. Second,

an ANOVA showed that the GDI distinguished between each

pair of levels, including TD ( p < 0.05). These findings

strongly suggest that the overall level of gait pathology, as

measured by the GDI, is related to functional walking

ability. This conclusion supports the notion of using an

overall gait pathology index as a patient stratification and

outcome assessment tool.

3.4. Analysis by Cerebral Palsy sub-type

The 3128 strides from subjects with CP were grouped

into topographic classifications according to Gage [29].

There was a clear trend of decreasing GDI with increasing

severity of involvement (see electronic addendum Fig. S1).

The TD mean was 100 (by definition), while the next closest

group was the unaffected side for Type I Hemiplegia (just

below 90). The so-called ‘‘unaffected’’ side was thus one full

standard deviation away from the TD mean. This finding

reaffirmed the prevalent clinical impression that the

contralateral side of a person with Hemipligia is affected

by a crossover/coupling effect from the involved side.

4. Discussion

A new measure of overall gait pathology, the Gait

Deviation Index (GDI), has been introduced along with

concurrent and face validity data. The GDI scales with

overall gait function, is well behaved statistically, and can be

implemented easily using the Supplemental data provided

with this article.

The GDI was strongly correlated (r2 = 0.56) with the

previously validated and widely used GGI. This suggests that

the GDI and GGI are both measures of the same underlying

construct, though the large spread at any given level indicates

that they measure different aspects of gait pathology. It

remains to be determined what accounts for this spread.

The GDI scaled monotonically with FAQ, and was

normally distributed for FAQ levels six to ten and TD

children. The GDI was sensitive enough to differentiate

between every pair of FAQ levels based on an ANOVA.

Coincidentally, the decrement in mean GDI with decreasing

FAQ level (e.g. FAQ = 10! FAQ = 9, FAQ = 8! FAQ = 7,

etc.) was quite consistent, with a mean decrement of 4.3 and a

standard deviation of 0.9. Recalling that the GDI is measured

in ten-fold standard deviation units, this means that each FAQ

level was separated from its neighbor by about 0.43 
 0.09

standard deviations. The FAQ was not designed to provide

equally spaced functional intervals, however, it appears to do

so, at least as measured by the GDI.
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Fig. 4. Histograms of the GDI stratified by FAQ level show that (i) the GDI

is normally distributed across a wide range of walking abilities, and (ii) the

GDI differentiates between various overall walking abilities (see Table 1 for

additional details). The normal distribution curve is shown for comparison,

and a heavy vertical line indicates the control mean (GDI = 100).

Table 1

GDI by FAQ level

FAQ N Mean Std. deviation Minimum Maximum Normally distributed (K–S test)

6 (7,8,9,10,TD) 382 64.6 10.9 39.9 112.4 True

7 (6,8,9,10,TD) 471 69.8 11.1 31.7 103.8 True

8 (6,7,9,10,TD) 916 73.1 11.8 38.9 118.1 True

9 (6,7,8,10,TD) 1205 76.9 11.5 44.8 123.3 True

10 (6,7,8,9,TD) 948 81.8 11.8 44.0 126.5 True

TD (6,7,8,9,10) 166 100.0 10.0 73.9 129.9 True

Numbers in parentheses indicate statistically significant differences as determined from an ANOVA with p < 0.05.
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The effect of diagnostic sub-type within the CP group

was similarly compelling—the GDI decreased steadily as

the overall level of clinical severity increased. Furthermore,

the GDI distinguished between the affected and contralateral

side for Hemipligia, while also confirming that the

contralateral side does not exhibit a typical gait pattern

(i.e. GDIcontra < 100). While the gait deviations for the

affected side got progressively larger for Hemiplegia Types

I–IV, the contralateral sides for Type I–III showed

essentially the same amount of pathology (about 1 1/2

standard deviations from TD), however, this was not the case

for Type IV Hemiplegia, where the contralateral side was

almost two standard deviations away from TD.

The analysis of VAF and reconstruction fidelity (F)

showed that 15 features provided a sufficiently accurate

approximation to the original gait vector. This amounts to a

459/15 = 30.6-fold reduction in data. This sizeable com-

pression reflects the high degree of underlying interdepen-

dence in the original data. The reconstructed data were able

to capture deviations in timing, level, and shape; lending

credence to the notion that the 15 features can give overall

measure of gait deviation. A similarly high level of F was

found for non-native data, though it should be noted that the

non-native data was collected at the same center as the native

data. Similar results would be expected for non-native data

from other centers. This conclusion is based on the

underlying principles of the SVD method, and holds as

long as the non-native data can be closely approximated by a

linear combination of gait cycles from the native data.

The number of features to preserve (mcrit) is clearly a

subjective assessment. It may be the case that for some

applications a closer approximation of the original gait data

may be desired, in which case more features can be used. It

may also be the case that for a different set of gait data (e.g.

only sagittal plane angles), fewer features may provide

sufficiently accurate reconstruction. For the GDI as

described here, this specific set of kinematic data and a

15-feature reconstruction are strictly assumed.

The GDI methodology incorporates three-dimensional

rotation angles for the pelvis and the hip. At the knee, only

the sagittal plane was used, since the coronal plane is prone

to artifact (cross-talk from poor knee axis alignment) and the

transverse plane of less clinical relevance in most centers. At

the ankle, the sagittal plane was also chosen for reasons of

clinical utility and practicality; namely the fact that few

centers regularly collect three-dimensional hind foot data

required to compute coronal and transverse plane ankle

rotations. Finally, foot progression was selected as it tends to

be the most commonly used transverse plane foot orientation

measure. It should be noted, however, that the same general

steps outlined above can be used to derive similar indices

based on different sets of kinematics (e.g. a hip score, or

a sagittal plane score), as well as on combinations of

kinematics, kinetics, and enveloped electromyographic data,

though scaling considerations would be required in these

latter cases.

The GDI is straightforward to implement. A center

merely needs to carry out a matrix multiplication, along with

a few elementary statistical and arithmetic operations. All of

these steps can be accomplished using the provided

electronic addendum. While the GDI has not been

extensively evaluated on non-native data, early indications

are that the index works well in other centers [30].

The underlying feature extraction methodology and gait

proximity measure have many other possible applications.

One such application currently under development is to use

the proximity metric (Eq. (7)) to aid in problem identifica-

tion and treatment planning. The scheme under development

is as follows:

� A center collects gait data for a new patient (gpatient).

� All existing gait vectors within the center’s database are

sorted based on proximity to gpatient. Additional sorting

criteria, such as age, diagnosis, or prior surgery can also

be used.

� A set of closely matched patients are selected, and the

previously determined gait problems, surgeries, and

outcomes are compiled.

� Treatment and/or patient characteristics exhibiting good

and bad outcomes are then extracted, and this information

is used guide treatment decisions on the patient at hand.

Future work will focus on further validation of the GDI,

extension to kinetics and EMG data, multi-center study

considerations, along with exploring additional applications

of the basic methodology.

Appendix A. Supplementary data

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.gaitpost.

2008.05.001.
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